A New Improved Feature Extraction Method in Memory EEG Data
نویسندگان
چکیده
various papers and conferences about EEG data can be found at present. There are various feature extraction methods reviewed oversimplified in section one, such as zerocrossing, low zero-crossing rates, coherence analysis, subspace methods, the mean absolute amplitude, standard variance, kurtosis and so on. The feature extraction methods such as self-produced mother wavelet feature extraction method, best basis-based wavelet packet entropy feature extraction, empirical mode decomposition and non-linear feature extraction using correlation dimension and Hurst exponent are detailed introduced in section two. Those feature extraction methods are complex and limited, which often used in some specific fields. In this paper, a new feature extraction is proposed named incremental value, which considers the changes in brain waves. Next LDA and classification tree are used to analyze the results of feature extraction and to predict with unequal memory error compared with the feature extraction methods, such as mean absolute amplitude, standard variance and kurtosis. The method that we proposed is concise and accurate than other methods.
منابع مشابه
EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملComparison of Parametric and Non-parametric EEG Feature Extraction Methods in Detection of Pediatric Migraine without Aura
Background: Migraine headache without aura is the most common type of migraine especially among pediatric patients. It has always been a great challenge of migraine diagnosis using quantitative electroencephalography measurements through feature classification. It has been proven that different feature extraction and classification methods vary in terms of performance regarding detection and di...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کامل